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EQUI VALENT CONSTRAINTS FOR DISCRETE SETS

R. R . Meyer

1. Introduction

Gould and Rubin [6] developed a procedure for perturbing the (real )

data of a system of linear constraints on a finite set of rational n-vectors

so as to obtain an equivalent set of constraints with rational data (see Theorem

1 below). The purpose of Section 2 of this paper is to describe how a related

result of Meyer and Wage [11] for the unbounded case may be used In an alterna-

•‘ : tive and somewhat simpler derivation of the results of Gould and Rubin . The

approach used in Section 2 is then generalized in Sections 3- 5 to extend certain

ideas of Bradley [1] and others for collapsing systems of equations into “equiv-

alentt ’ single equations.

2. uRat ionalizing lt Linear Equations

The following result is the main theorem of Gould and Ru bln [6 J :

Theorem 2 . 1: Let

F R {xI Ax < b , Dx = e , x ~ X*}

where the matrices and vectors j~, b, D, and e are comprised of real s, and
• 

* nX is a non-empty , finite subset of Q , the set of rational n-vectors .

Then there exist rational matrices and vector s A , b, D, e (which may be

chosen arbitrarily close to A ,b , D,e respectively) such that

F R = F Q ~~{ x I ~~ x < ~~~,~~~x = e , X E X }

To establish this result , the Inequality constraints may be dealt with by per-

turbing the data in a fairly straightforward manner , but the equation s require

Sponsored by the United States Army under Contract No. DAA GZ9-75-C-0024
and by the National Science Foundation under Contract No . DCR 7 4-20584.
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rather more delicate considerations . To deal with the equations , Gould and

Rubin established the following Lemma:

n 1 n
• Lemma 2 . 2: Let r e  IR , r0 e Q ~ and define Q(r) {x~ X~~ Q ,r x

Then there exist rational vectors r which may be chosen arbitrarily close to

r such that Q( r) C {xI x € Qn , c~ = r0 } Q(r).

Given this Lemma , by selecting an ‘

~ close enough to r so that no

element of X*\Q(r) can satisfy ?x = 
~~~
, the relation Q(r) fl X~ = Q(~

.) fl

is established , and the main theorem may be proved by considering the equa-

tions and inequalities one at a time.

Gould and Ru bin proved Lemma 2. 2 by extracting a maximal set of

linearly independent vectors of Q(r) and considering certain algebraic trans-

formations involving the inverse of a submatri x of that maximal set of columns.

• The procedure to be described below does not require any matrix operations

and works directly with the data (r ,r0 ) rather than the vectors of Q(r).  The method

essentially consists of re-writing the equation r x  = in such a way that

Lemma 2. 2 may be proved by selecting rationals sufficiently close to the ir-

rationals In the re-formulated version of rx  = r0 . (Gould and Rubin note that

the result of Lemma 2. 2 cannot be obtained by simply choosing i~ close to r ,

so the nature of the re -formulation of the equation is critical to the proof . )

Lemma 2 . 2  is trivially true if Q(r) ~~, so we shall assume r # 0  and Q(r) � ~~~.

The “critical” constants are identified by determining a minimal

cardinality Index set I such that each r~ may be expressed as a rational

combination of r . with i € I (the r~ with I I may be thought of as a basis
- ! over the rational field for the elements of r). Such an index set I corresponds

~~~~~~~ ‘ 
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to the rationally independent elements (i . e ., no non-trivial rational combination

is 0) of r , and may be derived by the usual  procedure for extracting a linearly inde-

pendent set . Once this is done , the equation rx  = is written as
- • n

~ 
r~)x. •i

~ ‘j = l j € • I  ~ n
~ , 

I where the a~ • are rational , and then as r , ( ~ a • x .) = r . Since
1,) 

i€I 
1 j—l ~~~ j 0

we are assuming that Q(r) � ~~ there exists rationals such that
L

= ~~ r . ( ~~~ a , .~~~.) ,
id j 1  ~

and , for notational convenience , we define the rationals

~ 
~~ X~ (i € I )

(Note that this approach doe s not require that be rational.) Then , as

shown in [111, each element of Q(r) must satisfy the system of equations

(2.1) . x. = ( j €  I ) ,
• j =]. ~~

( note that every rational solution of this system also is in Q(r), so that the

system (2 . 1) provides a rationalization of 0(r) that is valid in the unbounded

case) so that for arbitrary constants r !

t (2 .2 )  0( r) C { xj x €  0~ 
i~~I 

r~ 
j l  

~~~ x~) = 

~~ 
r 

~~
} .

Since the r~ may be chosen as rationals arbitrarily close to the r1, the

relation (2. 2) yields Lemma 2 .2 .  (Note also that if the r~ are chosen as the

elements of any rationally independent set , then the subset relation in (2 .2 )

may be replaced by an equation . This result will be generalized in Section 3 . )

Example 2. 1: Consider the equation

+ (I - ‘~T~~)x 2 = 1



and re -write it as

~~~ 
x~ + (1 - 

~~~~ 
)x~ = + (1 -

From the latter formulation and the rational independence of ‘.11 and 1 -

it follows that any rational solution of the equation must satisfy x1 = 1, x2 
= 1,

‘4 i .e. ,  the equation has a unique solution over the rationals . Thus , for any

Tcon stants r1 and r 2 , the vector (1,1) will be contained in the solution set

of

r x  + r  x = r + r

It might be noted that for this example the rationalization procedure of Gould

and Ru bin would yield

( ‘.Ti + c)x 1 + ( l - ~ T~~- c)x 2 = l ,

where c is chosen so that the coefficients are rational . This example

illustrates that the procedure described in this paper may result in a modified

RHS if r is comprised entirely of irrationals, whereas the rationalization

procedure in [6 1 will leave the RHS unchanged, but will require as a con-

sequence that the perturbation of the coefficients be of a more restricted form . •

Example 2 .2 :  x1 + x2 + ~~ x3 + ‘JT x4 =

The rationalization procedure described above yields the equation :

1 1 A 1j .xl + + r3 x3 + r4 x4 ~

where and are arbitrary rationals. The rationalization procedure of

Gould and Rubin yields the same result , but requires somewhat more algebraic

manipulation to arrive at that result . This example illustrates that , in the

case In which r contains at least one non-zero rational and only rationally

independent Irrationals , the rationalization procedure can be accomplished by



simply replacing the irrationals by arbitrary rationals.

Note that while the system of equations (2 .1)  is equivalent to the single

equation rx  = over the rationals , i. e . ,  Q(r) = {xfx  ~ , x. =

j =l ‘

(i € I ) }, in general there does not exist a single equation with rational

coefficients whose solution set over all the ratlonals will be Q(r ) . For

example , if r0 * 0 and rk is irrational for some index k , then for any

rational vector r with rk * 0, Q( r~) contains a multipl e of the kth unit

vector , but Q(r) does not. On the other hand , the approach used above m di-

cates how the system (2 .1)  may be “collapsed” into a single equation having

the same Intersection with some finite set . In the next section we will indicate

how the constraint combination approach can be generalized in a number of

inter esting ways.

3. “Collaps ing” Systems of Equations into Single Equations

In this section we will consider conditions on functions f1 an d f 2

real-valued on a set X such that the set defined by

E {xlx€ X, f
1
(x) = 0, f2(x) = 0}

r coincides with the set

E(e) {xlx€ X, f1
(x) + (1 + c)f

2
(x) = 0}

for certain values of the parameter e . Using this approach , a system of m

equations may be “collapsed” into a single equation by combining two equa-

tions at a time . While the technique used in Section 2 took advantage of

the linearity of the function s involved and the finiteness of the set X~
’, these

restrictions can be relaxed In various ways , and the results to be obtained also

generalize some of the results of Bradley [ 1  1. The approach also d i f fe rs
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from Bradley ’ s, in that it Is based on the perturbation ideas of the previous

section rather than the number theoretic properties used In [1].

In order to identify values for e such that E = E(c) ,  it is convenient

to define a “prohibited” set

f
1
(x) + f2

(x)
P {v lv — -f (x) for some x €  X’ },

2

where X’ {x lx€ X, f2(x) � 0) . ( Note that P is determined by f1, f 2 , and X . )

The motivation for this definition Is the following Lemma :

Lemma 3. 1: E = E(e) If and only if c ~ P.

Proof: Clearly E C E( c) for all c , so we need only show E(t) C E. If

~ P and ~ € E(~~), then f 2(~~) = 0 Implies f 1(~~) 0 , so suppose f 2(i) � 0 .

Then c = (f1(x) + f 2(i))/ ( - f 2(~~)) and cc € x’ contradict c ~ P. Conversely,

if c P, there exists an € X’ such that c (f 1(cc ) + f 2(i~))/( -f 2(cc )) , so

that € E(c) but i~ E.

The Lemma implies that a valid combination of the con straints exists

if P � R’, so the results below are based on specifying conditions on f , f ,

and X that yield identifiable “gaps ” in P . Qualitatively, three types of

results will be considered : ( 1) P C Q1
, (2) P is finite , and (3) P contains

a gap near 0

Our first result deals with the case In which P C Q1 and generalizes

the results of Section 2 .

Theorem 3. 2 If , for I = 1 and 2 , f1(x) is rational for X €  X~ then E = E( c )

for all irrational e . More generall y, j~ f are rational-valued on

X and e1,.. . ,c are rationally independent , then
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{x lx € X, f1
(x) = 0 , . . . f~ (x) = 0) =

{ x l x €  x, C 1f1( x) + . . + C~~f~~(X) = 0)

Proof: Follows directly from the definition of rational independence.

Since the c. may be chosen arbitrarily close to 1 , note that Theorem

3. 2 says that there exist equivalent formulations whose single equation is

arbitrarily “close” to the sum of the original equations . Note , however , that

simply summing the equations will , in gen eral , not lead to an equivalent

formulation .

Finiteness of P can be guaranteed by assuming that X is a finite

set or that f1 and f 2 take on only finitely many different values over X .

When P is finite , Lemma 3 . 1 shows th at  “weighting ” and adding two con-

straints leaves the feasible set unchanged except for a finite number of

“prohibited” values of e . Wtiile P itself niay oe ciifficult to compute ,

gaps in P may be easier to identify .

Theorem 3 .3 :  For i = 1, 2, let f . : X- . Y., where Y . i s a finite subset of

for each i . Then there exist positive constants M and ~ such tha t if

e~ € (0 ,M )  or ~ej  > ~ , then E E(~~)
I
• Proof: The result follows immediately from the finiteness of P . U

In particular , Theorem 3 . 3 will hold if X is any finite set . Rul in g

out the trivial cases in which f 1( x) + f 2(x)  = 0 for all x e X (in this case

‘1 any c � 0 may be used , and in particular E = E ( - l )  = {x Ix  X, f1(x) = 0 )  =

{ x l x e  X , f 2(x) = 0) )  or f 2(x) = 0 for all X €  X ( in this case any e may be

used , and in particular E = E ( - l )  = {x~x ( X, f1(x) = 0 ) ) ,  expressions for M

and ~ may be derived , since it is clear from the definition of P tha t  in

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Theorem 3 . 3 we may take M = y u ~~ , where

inf 1f 1( x) + f 2( x ) I

s. t f1( x) + f 7 ( x) � 0 , X E  X

sup 1f 2(x) (

s . t . X E  X ,

and f i  = at3~~, where

a sup I f1(x) + f
2
(x)

s.t .  X E  X

~~

s . t . f 2( x) � 0 , x~ X

Sharper results can , of course , be obtained by considering appropriate sign

restrictions on f 1 + f 2 and f 2, and , on the other hand , cruder estimates of

M and 1~I can be obtained by using estimates for y ,~~,a, or ~3 derived from

relaxed versions of the corresponding optimization problems . ( For example ,

if X is comprised of the vertices of a cube , X may be replaced in the de-

fining optimization problem by the cube itself .)

Even if the finiteness hyp othesis  of Theorem 3 . 3 does ~~~ hold , the

relation E = E( e) will hold for I d  in the ranges described above , provided

that y, ..~~, a, and ~3 are positive and finite .

Corollary 3 .4 :  If ‘y and -~ are positive and finite , then E E( c)  provided

that I c  € (0 , y~~
1) . If a and ~3 are positive and finite , then E = E(e)

provided that Ic  > a~3 ’

Proof: It is easily verified that if e sati sfies the conditions of the Corollary,

then e~~~P . S

-8-
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Positivity of ‘y and ~3 can be guaranteed by assuming that f 1 and

• f 2 are int eger-valued over X , but it is also sufficient in this regard to

• assume that the f are finite sums of the form ~ r . h .(x) where the r . arei 3 3

rational and the h . are Integer-valued over X . If , in addition , certain

boundedness properties are assumed for the f~, it will follow that E = E ( e)

for l e t  positive and sufficiently small . In particular , i t suffices

to have f bounded both from above and below on X , or each f . bounded2 1

either from above or below on X . In the former case we have :

Corollary 3. 5: If ‘y > 0 and if f 2 is bounded both from above and

below on X , then E = E( e)  for all e such that t e l  E (0 ,

• To deal with the case of one-sided bounds on the f ., we will consider
1

only the case In which both f . are bounded from below , since the other cases

• can be handled by replacing the constraint f1( x) = 0 by -f .(x)  = 0 as needed .

Theorem 3. 6: If ‘y > 0 and if there exist non-negative constants and

£ such that , for I = 1 and 2 , f~(x) > -1 for all x € X, then E = E( e)

for all sufficiently small c > 0

Proof: Define

sup f 2(x)

s. t. f1(x) < 0 , f
1(x) + f2(x) < 0 , x E X

and note that the constraint f1(x) + f 2( x) < 0 implies f 2(x) < , so that

~~~ 

. It will be shown that it suffices to choose e > 0 such that

max {c -

~~~~ 
‘ ~ 

< y . (Note that 
~ ~l implies that e may be chosen

so that  c max{11, 12 } < y . )  Suppose that c Is so chosen and that e E P.

Let x ~ X’ be chosen so that

-9-
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11(x )  + f2(cc ))/ (-f 2(cc) ) = c

and thus

(3 .1) f1(cc + f 2(cc) = -e f 2( cc ) .
If f 2(cc ) > 0 , then f1(cc ) < 0 , f1(cc ) + f 2(cc) < 0  , and the absolu te va lue of the

RHS of (3 . l )  lies in the interval (0 , e~~2]~ whereas the absolute value of the

LHS is at least y ,  which leads to a contradiction since e W
2 
< 

~~~~. If

f 2(i)  < 0  , we obtain a contradiction since c -

~~~~ 

< y .  U

Corollary 3.7:  If , for i = 1, 2 , g .(x) is non-negat~ve and integer-valued

for all x € X, and r1 and r2 are non-negative ir~~gers satisfying 0 < r 2 <0

G {xtx€ X , g
1(x) = r1 , g

2(x) = r 2 } =

2 + r1r 2 + r1 + Zr 2{x lx  E X , g1(x) + [1 + (r 1 + l)  ] g 2(x) = r1 + 1

If , in addition, 0 < r 2 < r 1, then

1 r1 + r 1r~~+ r 2G = {xlx E X, g1(x) + (1 + rj~ ) g2 (x) = 
r

Proof: For the first conclusion , apply Theorem 3. 6 with f .(x)  g . (x)  - r ,

noting that ~ > 1. For the second conclusion note that integrality implies

w 2 < r 1- l .  a

Note that by Corollary 3 . 7 , when 0 < r 2 < r 1 the set

{x I x ~ X = r1, g 2(x) = r 2 )

coincides with the set

(xix € X , r1
g
1(x) + (r

1+l
)g
2(x) = r~ + (r 1+l) r 2 } .

Thus , an integer combination of the two constraints into a single equi-

valent constraint can be obtained by weighting the first constraint by r1 and

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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th e second by r 1+1. (By making use of number theoretic properties , sharper

results can be obtained in some cases . These re sults will be developed in

the next section . )

For the next result of this section , we consider the special case of

linear con straints . This result yields some insight into the stability proper-

ties of int eger programs. On the one hand , the existence of equivalent con-

straint combinations implies a degree of stability , but on the other hand , the

limit of these combinations ( involv in g  th e sum of the equation s) will generally

* have a larger feasible set , which imp lies  a degree of instabi l i ty .

Corollary 3 .8:  Let E * {xlDx = e , X E  X }, where X is a finite subset

• of ~ n and let s denote the vector obtained by summing the rows of D ,

and a- denote the sum of the elements of e. The n there exist s and a-

(whi ch may be chosen arbitrarily close to s and a- respectively) such that

E* = (x i  ~ x = ~~~~, x E X }. If , in additi on , X C Qfl~ then , in addition to the

other criteria , one may also require that E Q
f l
, ~ e Q1

Proof: The results are an immediate consequence of Theorem 2 . 1 and Theorem

3 . 3 .

• It is easily seen that inequality constraints over finite sets can be

collap sed after  conve rting them into equat ions by adding s lacks in the  usua l

way, since the slacks will also have values in a finite set. Note , however .

tha t  a straightforward conversion of the resul t ing single equation (conta ining

.i lü ck va riables) into an equivalent single inequal i ty  in the original variables

is , in general , not possible slnce, re gard le s so fthe value sof  e .  the set

{x) f 1( x) < 0  , f 2( x) < 0 , x e  X}
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will in general be a proper subset of

{ xl f 1(X ) + ( 1+e) f 2( x) < 0 , x €  X)

even when X is finite .

By mimicing an appr oach used by Bradley [1] for integer-valued func-
I,

tions , Theorem 3 . 3 can be used to establish a result similar to a Lagrange-

multiplier theorem .

Corollary 3 . 9 :  Let f . (I = 0 ,. . . ,m) be real-valued functions defined on a

set X with the property that , for each i , there exists a finite set Y~ such

that X e  X implies f (x) € y, ;  then there exist multipliers , X~ (each of

which may be chosen arbitrarily close to 1) such that the problem

mm f 0(x)

s. t . f .(x) = 0 (i = 1,. . . ,m)
1

X e  X
is equivalent to the problem

mm f 0( x) + >~• . f.(x)

s . t. f0(x) X . f.(x) E

Proof: The problem

mm f 0(x)

s . t. f .( x) = 0 (i= l ,. . . ,m)

X E  X
is equivalent to



-. - •  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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- 
~~~~~~~~~~

mm z
x,z

s .t . - z + f 0( x ) = O

f
1
(x) 0 (1 = 1, . . .  ,m)

X E X , Z E Y 0

By using Theorem 3. 3, the constraints of the latter problem may be combined to

yield the equivalent problem:

mm z
x,z

m
s.t - z + f 0

(x)+~~ X.f.(x)=O (i=l , . . . ,m)
- 

i=l
X E X , Z E Y

0
.

The conclusion of the Corollary is then obtained by using the substitution

z = f
0
(x) + X . f1(x) U

4. A Number Theoretic Approach for Integer-Valued Function s.

Previously publ ished results in constraint combination (e . g. [1], [2],

• [4], [9], [12]) have generally been based on the use of number theoretic prop-

erties . In this section we will indicate how number theoretic properties may be

used in conjunction with the approach of the previous section to obtain some

n ew results for the case in which f 1 and f 2 are integer-valued.

Rather than dealing as in the preceding section with perturbations in-

volving a single (possibly non-integer) weight ( l+ c ) ,  constraint combination

with two integer weights will be considered . Thus , we define

E’ (r , s)  { x f r  . f 1(x)  + s . f
2
(x) = 0 , x€ X)

and seek suff ic ient  conditions for E = E’(r , s) ,  where , as In Section 3,

£ { x j  f 1 x) = 0 , f 2
( x) = 0 , X X}.

-13-
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- 
Our first result is the analog of Lemma 3.1 for this case and involves a

translate P’ of the prohibited set defined by P’ (v i  v = -f
1
(x)/f2

(x) for

some X E  X’ }, where X’ {x i x e  X, f 2(x) � 0) .

Lemma 4.1: If r *  0, then

E = E’(r , s) if and only if s/r ~

Proof: Analogou s to proof of Lemma 3. 1. •

Proceeding along the lines of Section 3 , we wish to develop sufficient

conditions for integer pairs (r , s) with r * 0 to have ratios s/r not in P’ .

(It is possible to develop an analogous set of results under the hypothesis s � 0,

but to avoid cluttering the development we shall consider only th e case in which

r * 0 . Note also that if X is infinite , then P’ may contain all rationals and

an equivalent rational combination of constraints may not exist. )  For the re-

4
mainder of this section we assume that f1 and f2 are integer-valued on X

(Note , however , that the domain X need not consist of integer vectors.)  The

following Lemma establishes a key property of elements of P’ . ( Recall that

two integers a,~ are relatively prime if their greatest common divisor (gcd(a ,~3))

is 1 , and note that , under the assumption that the ~ are integer-valued , each

element v of P’ may be represented in the form s/r , where r and s are

relatively prime integers. )

Lemma 4 . 2 :  If r and s are relatively prime integers and s/r € P’ , then

• there exists an integer k * 0 and an i € X’ such that f1(x) = k~ s and f 2(cc ) =

• 

Proof: Since s/r € P’ , there exists an cc € x’ such that -f 1(cc)/ f 2(cc ) = sIr ,

and thus there exists a constant k * 0 such that f 1(cc )  = k .  s and f 2(cc ) -k . r .

-14-
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(Note that if s = 0 , then r = I , and the conclusion is immediate . )  Since r

and s are relatively prime and f 1( x) and f 2(x) are integer , k~ is the

“generalized greatest common divisor ” of f1( x) and f 2 ( x) , and is thus

integer (see [11]). Alternatively , one could note that -r f 1(x) = s .  f2(x) ,  and

obtain the resul t by appropriately grouping the prime factors on both sides . .

• Proceeding along the lines of the previous section , we develop a result

based on identifying values not in P’ .

Theorem 4. 3: Let r and s be relatively prime integers such that one of the

following sets of condition s is satisfied:

(a )  f
2

( x ) E [-~ 2,u 2] for all X~~ X; ri > -
~
- rnax {~2 , u 2 } for an integer

- r n > l  ; ari d , (in th e case m > Z )  for iii = l , . . . , m- 1, X E  X and

• f1(~ ) = - j  s imply f 2(x) * j r
I

• (b) for i = 1, 2 and for all x €  X , there exist non-negative integers

- - 

such that f .( x) > -1~ ; r > £ 2 /rn and S>  £ 1 / m for an integer m > 1;

and (in the case m > 2 )  for I j i  = l , . . . , m-l , cc€ x and f 1(cc ) = ..j . s

imply f 2(cc ) * j r

then E E’(r , s).

• Proof: AssurrE that E � E ’(r , s). The hypotheses imply r * 0 , so by Lemmas

4. 1 and 4. 2 , there exists an cc € X’ and an integer k * 0 such that f 1(cc ) =

k • s and f~6c) -k r . Because of the bounds on r and s , I k i  < ( m - l ) ,

but this con~radlcts the assumed relationship between f 1 and f 2 on X . a

Example 4. 1(Bradley [1]): Consider the following system of constraints

• H 

• 

~Y! :~:~
÷ Z x ~~x~ :~: =I x1, x2 , x

3 > 0  x 2 , x 3 integer .

— ~~~~~~~~~~~~~~~~~~~~~~~~~ - - -  
~~~~~

---
~

-
~
- -

~~~
-- 

~~
• - • • •  
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It was shown by Bradley that the weights r = Il , s = 16 satisfy a set of

his sufficient conditions for valid con straint combination , namely they are

relatively prime and have the properties that r > max {0 ,S1) where

S1 sup f 2(x)

s. t . sgn ( s)  f1(x) < - Is I , x~ X

- and -r < min {0 ,I~~} , where

inf f (x)2 x 2

s .t . sg n(s )  f1(x) > Is I  , x~ X

• ‘
• Note that if , as in this case , f1 and f2 are bounded from below, and r and s

- are positive integers satisfying the above set of conditions of [I], then , for an

• appropriately chosen value of m , the conditions of (b)  of Theorem 4 . 3 will

hold. ( For the weights r = II , s = 16 , for example , it suffices to take m 1.)

However , T~eorem 4 . 3 with m = 2 may be applied to this exampl e to yield the

• valid weights r = 9 , s = 14, since the set of conditions f1(x) 14, f2(cc ) = -9 ,

cc € X is impossible, (f 2(cc)  = -9 implies that f 1(cc)  = 3m - Is , where m is

Integer) and f 1(x)  = -14 and cc € x imply [cc1] = 1, cc2 = 1, cc3 = 0 , for which

• cc it Is the case that f 2(cc ) < 6 . The weights r = 9 , s = 14 do not satisfy

Bradley’s sufficient conditions, since It is easily seen that s = 14 implies

S1 +oo (the inequality constraint in the definition of 
~l does not bound x1) . •

Several observations regarding Theorem 4 . 3 are in order at this point .

First note that the part of hypotheses (a) and (b) dealing with the relationship

between f 1 an d f2 is also a necessary condition for E = E ’(r , s) ; for , if r

and s are not both 0 and there exists a j * 0 such that f 1( x) = -j s and

-16-
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f2(cc ) = j r, then E * E ’(r ,s)

For non-negative f
1 , 

hypothesis (b) of Theorem 4. 3 will be satisfied

for r = s = 1, so that in this case the sum of the constraints is equivalent to

the original constraints (see [3], [7], [9] for previous results and applications

Involving non-negative functions.)

Except for such special cases, however, the computational effort re-

quired to check hypotheses (a) or (b) depends in part on r , s and m . In particular ,

if r and s are small in absolute value and m is large , the hypotheses are

unlikely to be satisfied , and would be difficult to check unless conditions

similar to Bradley ’s could be easily verified .

For m = 1, however, the required relationship between f
1 and f

2 is

vacuously satisfied, and we obtain the following Corollary , which generalizes

similar results of Padberg [12] for the case in which the f, are aff ine :

Corollary 4. 4: Let r and s be relatively prime integers such that one of the

following sets of conditions is satisfied:

• ( a )  f 2( x) € [ — ~ 2 ,u 2] for all x e  X ; I n > max {~ 2,u 2 );

(b) for i 1,2, there exist non-negative integers I . such th at f .(x) -

for x€ X ; r > 1
2 

and 5 > 1
1 ;

then E = E’(r,s).

Note that Corollary 4. 4 generalizes Corollary 3. 7 and guarantees the

existence of weights yielding equivalent constraint combinations In the cases

In which (a)  one of the two functions Is bounded both from above and below ,

or (b) eachof the two functions is bounded either from above or below.

The next result corresponds to m = 2 and Involves a condition that is

generally easily checked. It also provides a generalization of the following

_ _  _ _  _
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m
result of Mathews [9] for affine functions: Let f1(x)  ~~~

‘ a x - I , where
-

~~ i i  I1= 1
m

the a. and are positive integers and let f 2(x) ~ ~ x . - £ where the1 i =1
and £~~ are positive integers . If r and s are relatively prime integers

satisfying r > 1
~ and s > 1~ , then (x l  f1( x) = 0 , f~ ’x) 0 , x > 0 and integer) =

{x l r . f
1
(x) + s f 2( x ) = 0 , x > 0  and integer) .

Corollary 4. 5: Let r and s be relatively prime positive integers and , for

I 1, 2 , let f (x) = g.(x) - I , where g. is non-negative and integer-valuedi 11 1

on X and I . is a non-negative integer . If r > 1
a~ 

s > and g
1(x) = 0 if

and only if g 2( x) = 0 , then E E ’(r , s)

A number of other corollaries corresponding to the case m = 2 may be

easily derived. For example , the last statement in Corollary 4 . 5 could be re-

placed by the statement “If r > 1 2 , s > ~~~~~~ a nd f1( x) -s implies f 2( x) * r ,

then E = E ’(r , s). ” It should be kept in mind , however, that Corollaries 4. 4

and 4 .5  may be thought of as existence theorems applicable to fairly genera l

classes of functions , whereas the more general Theorem 4 . 3 identifies smaller

multipliers for function s obeying certain additional restrictions . (Even If the

conditions of Theorem 4 . 3 hold when m = 2 or 3 , the multipl iers may tend to
grow rapid ly , and may reach unmanagab le  sizes for large systems of con-
straints . It should also be kept In mind that , from a computational viewpoint ,

it is not necessarily advantageou s to replace a system of constraints by a
single constraint . )  The following example show th at , especially for constraints

obtained from inequalit ies by adding slacks , valid constraint  combination for

mult ip liers  uni form ly smaller than those of Corollary 4 . 4 may not be possible.

-18- 
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Example 4.2:

Z x + 3 x + x  = 7

2x1 + 4 x2 + x4 + x 5 = 7

x = {x~x . > 0 and integer , i = 1, . . . , 5) .

Let r , s be integers in [1,7], and note that by taking cc = (O , O ,7~~s , 7 , r) T ,

• we obtain f1(x) = -s , f 2(cc) = r , where f 1(x) = 2x1 + 3x 2 + x3 - 7 and

f 2(x) = x1
2 

+ 4x 2 + x4 + x 5 - 7 . Thus , s/n E P’ , and Lemma 4.1 yields the in-

equali ty E ~ E ’(r , s). - a

If no sign restrictions are assumed on the coefficients in the affine case ,

then examples are easily constructed in the case X = ( x i x  > 0 , x integer ) for

which F’ consists of all the rationals , so that no valid combination of the

constraints exists. However , on a more positive note , our next theorem

shows that, even if bounds on the functions are ~~~ availabl e, it is possible to

construct valid constraint combinations if t r e  f , are “comparable ” in an

appropriate sense . ( This theorem can also be considered as a generalization

of the follow..ri g result of Glover [4] (which , in turn , sharpens a theorem of

Mathews [9]): Let f 1
(x) 

~ 
a~ x3 

- £
i~ 

where the a~ and are positive

Integers, and let f 2(x) ~ x . - £ , where ~ and are positive
J=1 ‘

integers. If X = (x ix  > 0  and integer), then E = E ’( l , s) if , for j = 1, . . .

S > ( 1 2~ l)a~ /~3~ - ~l and S > - 

~~z+1) a./~3 . .)

Theorem 4.6: For I = 1, 2 , let f~(x) g~(x) - £~ , where g
1 

Is Integer-

valued on X and is integer. If there exist non-decreasing function s w and

‘y such that x ~ X implies f 1(x) < w[g
2
(x)] and y[ g 2(x) ] < f 1( x) , then

-19-
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E = E’ ( l , s) forany integer s > 0  sa t is fying s> w ( 12 - l)  and S > ~y ( I 24.l).

Proof: Assume the result is false , so that there exists an cc € X and an inte-

ger k * 0 such that I1(x) = ks and f 2(x) = -k . If k > 1, then s < f 1(x) and

g 2(x) < I ~-l . Since w is non-decreasing,  the latter inequality implie s

w[g 2(x)~ < w(f z~
l) .  However , this is impossible since s < f 1(x ) < w[g 2(x) ]  and

w(1 2 -1) < s . On the other hand , if k < -1, then f 1(x) < -s and £
~~+l < g 2(cc) .

Since y is non-decreasing,  ~
( 1

~~
+l) <~y [g 2( x) ] .  However , this leads to a

contradiction since -s <~j(I2
+l) and ~j[g2(cc)] 

< f
1
(x) <-s .

Example 4 . 3 :  Consider the constraints :

= 0

x1 - x2 + [sgn(x 1-x2)]x1 
- 2 = 0

X E  X = { x l x > 0  and integer),

where sgn(y)  = + 1 if y > 0 , and sgn(y) = -1 if y < 0  . These constraints

hav e the unique solution x1 = x2 = 2. Note that  the hypotheses of Theorem 4 . 6

are sati sfied by taking f 1(x)  = g
1
(x) x

1
-x2, 

g
2
(x) g

1(x) + [sgn(g 1(x ) ) ]x 1-1,

= 1, w(y)  = max {0 ,y )  and ~(y) = min {0 ,y }. Thus , the equality constraints

may be combined with weights r = l and s = l  > max {w(0) ,  -~‘(2) } = 0 to yield tne

equivalent (over X) constraint 2(x 1-x 2 ) + [sgn(x 1-x 2)]x 1 = 2 . U

In the case that  g1 and g2 are linear and satisfy certain sign condi-

tions , Theorem 4 . 6 can be applied to yield the following generalization of

• Glover ’ s result :

Corollary 4. 7: Let f 1
(x) E ~ a x~ - I

l , 
where the a are non -

j =l

negative integers , and  let f 2(x) v 
~~ 

x~ - 1 2 ’ where the are

positive integers.  If  X C { xj x  > 0 and integer ) and S > 0  is an integer such

-20 -
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that s > w . ( f ..l)..1 ( where ~~~ max{a ./ ~~~)) and s > 11, - ~ . ( I z +1) (where

min{a./)3 ,}), then E = E ’(l , s).

Proof: 

- 

Note that if we def ine g
1
(x) 

~ 

a. x, and g 2(x)~~ 3 .x ., then for

x € X ‘y 
. g

2
(x) <g

1
(x) <w . g

2(x), 
so that ‘y . g

2
(x) - 1

~ < f 1(x) < w g2(x)- 1 1.

Thus , by defi ning y(y) = . y-1
1 

and w(y) = w . y-11, all of the hypotheses of

Theorem 4 . 6 are satisfied .

More generally, if g1 is non-nenative on X, then the relation y [g 2(x) ]  <

* f1(x) is trivially satisfied by letting y(y) _ 1
l~ and we obtain the following

-
~~ from Theorem 4.6:

Corollary 4.8: For i = 1, 2 , let f .(x) g (x) - I , where g. is integer-

valued on X an d 1 . is integer. If g1 is non-negative on X and if there

exists a non-decreasing function w such that  x € X and g 2(x) < I  
~~

l im ply

f
1
(x ) < w[g 2( x)] , then E = E ’(l , s) fo r any  integer ~ > 0  sat isfying s> 1 1, ~ >

w(I 2
_ I).

Proof: Note from the proof of Theorem 4. 6 that the inequality f1(x) < w[g 2(x) ]

is required only in the case g2(x) < I  With this observation the Corollary

results from taking ‘y(y) ~~~ U

Example 4.4: Consider the following system of constraints (obtained from Bradley ’s

example by changing one term and interchanging the order of the resulting equa-

tions):

[x~ ] + 3x 2 x~ - 9 = 0

[x~ ] + 3x 3 + 2x~x~ - 15 = 0

It may be verified that , in applying Theorem 4.8 to this example , it is possible

to use w(y) = y-9 , so that  a valid set of multipl iers is r = I , s = 10 .

-2 1- 
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It might be noted that the proof of Theorem 4. 6 also goes through If w and

‘y are assumed to be increasing and the conditions on s are replaced by the set of

conditions s > 0, s > w( 12 ) , and s > -‘y (1 2 ) .  These conditions have the interesting

property that if either of w(12
) or 

~~~~~~~~ 
is negative , then it is possible to conclude

that E Is empty. For, if ~ € E , then g 2(x ) = 1
~ 

and f 1( x) = 0 so that 0 f 1(x)  <

w(12 ) and 
~~‘2~ 

< f1(x) = 0

In the linear case, an extension of Corollary 4. 7 can be obtained for the

case in which both sets of coefficients a. and 13. are merely assumed to be non-

negative. Note that if for some k , ak = 13k = 0 , then the variable X
k 

is unrestricted

both before and after any constraint combination , and thus has no effect on the rela-

tion between E and E’(r , s).

Corollary 4 .9: Let f 1(x) and f 2(x) be defined as in Corollary 4 . 7 , let a . and 13 .

be non-negative integers, and let J be the set of j satisfying a. + 13 . > 0 . If

x C (x ix  > 0 and integer ) and S > 0  Is an integer such that S > w ~~ + Iz
_ l )  - 1

1

(where w~~ max {a./(a .+13,)}) and s> 1 -~~(i +1 +1) (where ~~~ m m  (a /(a . + 1 3 . ) ) ) .
j E J  J 3 )  1 1 2 • 

~ ~‘ i

then E = E’( l + s , s) .

Proof: The constraints f1(x) = 0 and f
2
(x) = 0 are equivalent to the constraints

and f1
(x)+f

2
(x) = 0 . The resul t then follows from the application of Corollary

4.7 to the latter system , ignoring any 0 columns for the reasons cited above. a

For the final result of this section , note that If there exist y1 
and

such tha t + y 213 . > 0 for all j , then the original system can be transformed

Into an equivalent system in which all coefficients are positive, so that Corollary

4. 7 may be applied. Moreover, the existence and values of su itable y1 and y
2

• may be determined via linear programming by solving the system of inequali t ies

-22-



+ > 1  ( j  = 1, . . .  , n )(t o  av oid t r ivia l  cases , a s sume  a
2

+ 13
2 > 0 )

n n
Theorem 4.10: Let f

1
(x )  “ ax , -1

~ 
and f

2
(x) “ ~ - I~ . If X C

j=1
{ x jx  > 0  and integer) and there exist y 1 and y 2 such tha t  Y1

a~ + ~~~~ >

for all j , the n there exist r and s such that E = E ’( r , s ) .

I’ Of course , the existence of y 1 and y 2 sat isfying Y1
a~ + y

2~
3 . > 0 for

al l j implies f initeness of E. In the next section it will be shown that  if

X = ( x j x  > 0  and integer),  th en f ini teness of E is also a necessary condition

for the existence of r and s such that E = E ’( r , s ) .  providing a partial convers e

to Theorem 3. 3.

5 . Finit eness as a Necessary Condition.

Sufficient  conditions ( includin g f in i t eness  of the set X) for equivalent

formulat ions of vario us types were established in the pr eceding sections . in  this

secti on we will show that for l inear equat ions over Z~ {x~ x € ]R
rI . x i n t eg e r ) ,

f in i teness  of th e feasible set is a necessary condition (except in certain tr ividi

cases)  for the existence of equivalent constraint combinat ions.

The result will first be obtained in the case of two equations and then

generalized to systems of m equations.  The following Lemma , which may be

thought  of as a “ non-standard” theorem of the al ternative is needed for the two

equation case (geometrically, th e a l ternat ives  correspond to the cases in which ‘he

set {zI z = Ax for some x > 0) is and is not a “pointed ” con e ) :

Lemma 5 . 1: Let A be a Zxn matr ix  with l inear ly independent  rows and no 0

columns.  Then exactly one of the following a l ternat ives  must  hold:

( ‘)  there exis ts  a vector y su:-h t h a t  ~Tf\ > 0

( i i )  for each b ~ IP~ . there  exists an x > 0 such tha t  e i ther  Ax = b or Ax = -b.



Proof: Both ( 1)  and (ii) cannot hold s imultaneously ,  fo r let b be chosen so tha t

b � 0 and by  = 0. Then if x > 0 is such that  Ax = b or Ax = -b , then 0 < ( y TA)X =

yT(A x) = 0 , a contradiction . Suppose that  (ii) does not hold , and let b be chosen

so that neither the system Ax = b , x > 0 nor the system Ax = -b , x > 0 is solvable.

By the Farkas Lemma , there exists vectors u and v such that u TA > o, u T
b < 0

and vT
A > 0 , v Tb > 0. We will show that  (u + v) TA > 0 . First note that since the

rank of A is 2 ,  A contains 2 linearly independent  columns , so th at u T A * 0

* 
and VTA � 0 . Thus , u * p v for any p < 0. Moreover . u Tb < 0  and vTb > 0

E Timply u � p v for any p > 0. Thus , if q is a column of A such tha t  u q = 0 ,

then vTq > 0. (Here we take advantage of a property of JR2 
- th is result does not

extend to the case in which A has rank 2 and is m X  n for m > 2 ) .  The result

fol lows by tak ing  y = (u  + v) .  a

Theorem 5. 2. Let E {x IAx - I = 0 , x €  X}, where A is a Z xn integer matrix

with lin early independent rows and no 0 column . I is an integer vector , and

X = {x~x > 0. x in teger) .  If E * , then th e following are equivalent :

( a) there exist integers r , s such that E =

(b)  there exists a vector y such that TA > 0

(c) E i s f in i t e .

Proof: The relation (b )  => (a )  follows fro m Theorem -4 . 10 .

To prove tha t  (a )  —
~~ ( b ) ,  let b = (~ s , r) T and note that si nce A � 0.

~nn c 1 thu s r and s cannot both be 0 . so b � 0 . We will now show

that  nei ther  of the systems Ax = b , x > 0 and Ax = -b , x > 0 has a solution .

For , if Ax = b , x > 0 had a solution , it would have a (rational) basic feasible

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~__ , _ _~~~~~~~~~~~~~~ . ~~~~~~~ -~~~~~~~ -~~~~~~~~~~~~— -~~~~~~~~~~~~~~~~~~~~ 
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soluti on x~ , so for an appropriate positive integer k , k x * would be integer and

Ax * 
= k b . Letting x ’ e E then , A(x ’ + x*) = k b  + I, where I = (j , j ) T so that

(x ’ + x ) is in E’(r, s) but not in E . A similar argument applies if Ax = -b , x > 0

is assu med solvable. The conclusion ( a )  ==> (b) then follows fro m Lemma 5 . 1.

Clearly (b) =~~‘ (c) ,  so we need only show that (c) —
~ (b) .  If (b) did not

hold , then by Gordan ’ s theorem , there would exist a non-zero solution of the system

Ax = 0 , x > 0 . and he nce a rational solution , which in tu rn can be used to contra-

dict the finiteness of E . U

It should be noted that if the matrix A doe s not have linearly indep endent

rows , then there also exist weights such that E = E’ (r , s).  This is easil/ seen by

considering separately the cases (1) rank A = 0 , (let r ~~~ 5 = 

~~ 
( 2 )  rank A = 1,

E = r (choose r and s such that (r , s) A =0 and (r,s)I � 0). and (3) r a n k  A = 1,

E ~ ~ (choose r and s such tha t  (r , s) A ~ o’~. Moreover, the hypothesis that 1½

contains no 0 columns merely rules out trivial cases in which variables do

not appear in the equations .  The presence of such columns has no effect on the

validity of constraint  com binations , so that  from a computational viewpoint one

need only consider the non-zero columns.

In extending Theorem 5 . 2  to syst ems of equations , the follo wing direct

consequence of the theo rem is usefu l .

Corollary 5. :~ Let the hypotheses of Theorem 5 . 2 hold , and assum e in addition

ft~ t E is i n f i n i t e ;  then , for every pa ir r . s  u f in tegers .  £ is a proper subset of

L ’ ( r , s) .

* * * *• Corollary 5 . 4 :  Let E { x A  x - £ = 0 , X e  X ) ,  where A is an m X  n integer

rn~ trj x with rank  at least 2 and no 0 co lumns .  f * i s an integer vector , and

X = { xi x >  0 , x in teger} .  If  E * 
� .;, th en the fol lowin g are equ iva len t :

j  
—~~~~ ~~~~~~~~~ ---- — -~~~~~~~~~~~ - - • • - ~~~~~~~~
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(a )  there exists an integer vector q such tha t

E~ = ~~~~~~~~ - qT1~’ 
= 0 , x c  X}

(b)  the re exists a vector y such that yT1½ > 0

(c) £ Is finite .

Proof: Th e equivalence of (b)  and (c) follow by arguments  analogous to those of

the proof of T heorem 5 . 2 , as does (b)  => (a) ,  so we need only show that ( a )  => (c) .

Suppose that (a) holds , but that (c)  is false.  Witho ut loss of generali ty , let us
4 * *as sume that the rows of A have been ordered so that the first  two rows of A

* *
* are linearly independent  and let A be the matrix consist ing of a 1 = a1 , the f i rs t  row of A

m 
* * th *-~~~ 

- and a = q . a . , where a . is th e i row of /½ . Similarly,  let C be the2 • —‘ 1 1  1
1=2 

*2 -vector whose first component is the first component of £ and whose second
• . m 

* *component is ~ q1 £~~~ . Note that (a) implies E = £ ‘(q 1, l) E (here the nota-
i = 2  

*
* tion of Theorem 5 . 2  is being u sed) .  Since E is infini te , we ca n cbtain a contra-

dicti on via Corollary 5 . 3 if A has rank 2 and no 0 columns . Note that A can

have no 0 colu mns , for , if column j of A were 0 and x ’ c E*, then for any

• po sitive integer k , the vector x’ + k . e ., wh ere j is the ~th unit  vector , would

be in E but not in E * (since the ~th colu mn of /½ * is non-zero ) ,  contr adict ing

* E = E *. If the rows of A were linearly dependent , then since E* # ;. it would be the

* * *case that E = {xla 1 x - = 0 , X €  X ) .  However, by Corollary 5 . 3  with r = 1 and

s = 0 , the set on the RHS properly contains the set ( x I a ~ x - I~
’ 

= 0 , a
~ x~ 

= a .

*x ~ X) ,  which , in turn , contains £ , yielding a contradiction . .

If X C Z~ and there exists a y such that y A > 0. then by Theorem 4 .10

there exist weights such that E = E ’(r , s).  If  such a y doe s not exis t ,  th en the cone

K { zl z  = Ax ,x > 0 )  consists  either of the origin ( i f  A = 0) .  a lin e ( i f  A has r ì n k  I ) ,

a ha l f - space , or all of IRn . (N ote that the la t ter  case will hold If and only if n e i t h e r

IIILJI 
. • ~~~~~~~~~~~ 
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the  s y s t e m  y A > 0 nnr the sys~e ’i i  ~ A 0 l~~s 1 - net ’ .~ol ;iio n •) I h~•

following theorem gives suf f i c i e :~t c:o: dit ions for U = E ’ ( r ,  s)  in the •u ~ e K = fl~

Theorem 5 . e: Let E = ;  u n d  \ = Z  . I f  z • x ~~~~ x > 0 ~~ = l l~ und .~ r ’ i— x~sts

an integer  ven tor  j  = (y
1
, y
2
) with y 1 cina y 

, 
r r1 ~~ti ;~~i . ’ pr une ~~ • ~ .

L system Ax = y has u s o l u t i on  in /
‘
. t h e  F = E’ ( y  , . -y

1
)

Proof: Suppose tha t  E ’(y , . y
1

) 
~ 
;, so tha t  t h e r e  ex is t s  ~~ x e Z such t h .~ t

Ax- f  = k v for some n on—zero  1n t e j E ~ k l e t  x ’ Z~ sn~i s f v  Ax ’ = y .  i ; i  ChOeS’

an integer  p > 0 such tha t  A x = ( 
~~~~~~~~ 

h i s  •i S O l n t l c ’ n  ~ in I f  k > 0. *cn

* 
an integer q such that  q p > k , and o bt i i : i  a on t r iu ~ t i o n  fm: . th t r~ atio:~s

A (x + (q~ p - k ) x ’ ~ q x )  - C . k y + q - k)y - ( q  p)y = 0 -

If k < 0. a contradiction is s i m i l a r l y  ‘t c i i n ~~d by r i o t i n i  t h u ~ / i x  + :- . ) ••  I = 0 S

Corollary 5 . 7: If  F = ; , { z j A x  = z ,  x > 0 )  = JR
1 . and ‘

~ contu’n s i ~~~~~~~~~~~~~~ w i t h

• re la t ively  prime e lements  •
~~~

, 1 3 ,  then U U’ ( ~½ . -~~~

Civen i method for determi i~ ’~ j  f~- s i ~ i l i l y or 1r i ~c. .~s i : . i l i t - . in  t~ € . s i - i

:0 ~s t ra in t  ( k n a p s a c k )  case , one may use • i n  x ’ e n s i o~ of I i e o r e r n  ~‘ ‘ to ~~ m v ’r

• whe the r  or not E = ~~~. Once all hypo t hes ~~s (o ther  t h i n  I = .~~) of Theciren! . ‘
been verified , th en the de terminat io n th ut h (y ,,—; 1 

) = ,~ n~p1ie s  E = ,: ( s i n c e

E C E ’(y2,—y 1) ) ,  and the determinat io n  th at F’(y~.-y 1
) t imp l i e s  th at E is i n f i . i t r

5 . Summary .

We have shown how , under  va rious d i s n r e t e : c n s  ! vp othese s  e q ui v ~1ie t

yet ‘ simpler ’’ formulat ions may be oht n i ed  for systems of n . t r i . t s .

results generalize and extend related in n t r~~int trans to: nation r e s u l t s  of

a n d  Rubin , Ha mmer and Ru deanu , Br a d l ey , G lover  , and  o thers , and a l so  y i e l d

some i n t e res t ing  Ins igh t s  in t o  s t i b i h t y  ( an  i s t a l i h ~ :½ I m p e r t i e s of 1’ t~ ~~r ~m r ims.

I

_ _  ~~~~~~~~~~~~~ ~~~~
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